Final Exam Solutions

- 1. Let f be a differentiable function with f(1,3) = 7 and $\nabla f(1,3) = \langle 5, -2 \rangle$.
 - (a) Find the directional derivative of f at (1,3) in the direction of the point (4,2). (5 pts)

The unit vector in the direction of (4, 2) is $\langle \frac{3}{\sqrt{10}}, -\frac{1}{\sqrt{10}} \rangle$. Dot with the gradient to get the directional derivative is $\langle \frac{3}{\sqrt{10}}, -\frac{1}{\sqrt{10}} \rangle \cdot \langle 5, -2 \rangle = \frac{17}{\sqrt{10}}$.

(b) Find a reasonable approximation for f(.9, 3.1). (5 pts) $f(.9, 3.1) \approx f(1, 3) + f_x(1, 3)(.9 - 1) + f_y(1, 3)(3.1 - 3) =$

7 + (5)(-.1) + (-2)(.1) = 6.3

- (c) Let $z = f(\sin(st) + 1, e^s + t)$. Find $\partial z/\partial s$ when s = 0, t = 2. (10 pts) Let $x = \sin(st) + 1, y = e^s + t$. By the chain rule, $\partial z/\partial s = f_x(x, y)(t\cos(st)) + f_y(x, y)(e^s)$. At s = 0, t = 2 we have that x = 1, y = 3 so $\partial z/\partial s = f_x(1, 3)(2) + f_y(1, 3)(1) = 5(2) + (-2)(1) = 8$.
- 2. Evaluate the limit or show that it does not exist. (10 pts)

$$\lim_{(x,y)\to(0,0)}\frac{x^3y^2 - xy^4}{x^5 + y^5}$$

Along the paths x = 0, y = 0, y = x the limit is 0, however along y = 2x the limit is $-\frac{12}{33}$ so the limit does not exist.

3. Find the absolute maximum and minimum of $f(x, y, z) = x + y^2 + 3z$ on the paraboloid $x^2 + 2y^2 + 3z^2 = 36$. (15 pts)

This is a closed and bounded region so there is a max and min. There is no interior so just check for critical points on the paraboloid using Lagrange multipliers. The Lagrange multiplier equations are

 $1 = \lambda 2x, 2y = \lambda 4y, 3 = \lambda 6z, x^2 + 2y^2 + 3z^2 = 36$. The first and third equations simplify to $x = 1/(2\lambda), z = 1/(2\lambda)$ so x = z. The second equation gives us that y = 0 or $\lambda = 1/2$. Consider each case and use the fourth equation to get that there are 4 critical points: (3, 0, 3), (-3, 0, -3), (1, 4, 1), and (1, -4, 1). Plugging these into f we get f(3, 0, 3) = 12, f(-3, 0, -3) = -12,f(1, 4, 1) = 20, f(1, -4, 1) = 20 so the maximum is 20 and the minimum is -12.

4. Compute $\int_C (y^2 e^{xy}) dx + (e^{xy} + xye^{xy}) dy$ where C is the curve consisting of the two line segments from (0,0) to (2,2) and from (2,2) to (0,5). (10 pts) This can be done two different ways. If $F = \langle P, Q \rangle = \langle y^2 e^{xy}, e^{xy} + xye^{xy} \rangle$ then $P_y = 2ye^{xy} + xy^2 e^{xy}, Q_x = 2ye^{xy} + xy^2 e^{xy}$ so F is conservative. It has potential function $f(x, y) = ye^{xy}$ so by the fundamental theorem of line integrals, the integral is f(0, 5) - f(0, 0) = 5.

The other way to do this is to close the region with the line segment from (0,0) to (0,5) and use Green's theorem. The integral over the whole triangle is 0 by Green's Theorem as $Q_x - P_y = 0$. The curve from (0,0) to (0,5) can be parametrized as $x = 0, y = t, 0 \le t \le 5, dx = 0, dy = dt$ so the integral over this line segment is $\int_0^5 1 dt = 5$. Combine these two facts to get that the integral is 5.

5. Let D be a region on the xy-plane. Let S be the part of the plane 4x - 6y + 2z = 5 which lies above or below the region D, (i.e. points on the plane 4x - 6y + 2z = 5 with (x, y) in D). If the area of S is 11, find the area of D. (10 pts)

The surface S can be parametrized as $r(x, y) = \langle x, y, (5/2) - 2x + 3y \rangle$ where the possible (x, y) values are exactly those in D. Then $r_x \times r_y = \langle 2, -3, 1 \rangle$ so $|r_x \times r_y| = \sqrt{14}$. Using the surface area formula we get that the surface area of S is $A(S) = \iint_D \sqrt{14} \, dA = \sqrt{14}A(D)$ where A(D) is the area of D. Set A(S) = 11 and solve for A(D) to get $A(D) = 11/\sqrt{14}$.

6. Let S be the boundary of the region which is both inside the sphere $x^2 + y^2 + z^2 = 8$ and above the cone $z = \sqrt{x^2 + y^2}$. Find $\iint_S F \cdot d\mathbf{S}$ where $F(x, y, z) = \langle xz + 5y^2, e^{\cos(xz)}, z^2 \rangle$. (15 pts)

Use the divergence theorem. The divergence of F is 3z. The region can be set up in either cylindrical or spherical coordinates and two set-ups are the following:

$$\int_{0}^{2\pi} \int_{0}^{2} \int_{r}^{\sqrt{8-r^{2}}} 3zr \, dz dr d\theta$$
$$\int_{0}^{2\pi} \int_{0}^{\pi/4} \int_{0}^{\sqrt{8}} 3\rho^{3} \sin(\phi) \cos(\phi) \, d\rho d\phi d\theta$$

The value of the integral is 24π .

7. Find $\int_C F \cdot dr$ where C is the intersection of the plane z = 1 - 2x - 3y and the cylinder $x^2 + y^2 = 4$ oriented clockwise when viewed from above and $F(x, y, z) = \langle yz + \cos(x^2), -x^2, 3y \rangle.$ (20 pts)

Use Stokes Theorem with S the part of the plane which is inside the cylinder, oriented down. S can be parametrized as $r(x, y) = \langle x, y, 1 - 2x - 3y \rangle$ where $x^2 + y^2 \leq 4$. Then $r_x \times r_y = \langle 2, 3, 1 \rangle$ and we change this to $\langle -2, -3, -1 \rangle$ to match the orientation. The curl of F is $\langle 3, y, -2x - z \rangle$ and on S this is $\langle 3, y, 3y - 1 \rangle$. The dot product of the curl and the normal vector is -5 - 6y so the integral is $\iint_{x^2+y^2 \leq 4} -5 - 6y \, dA$. To evaluate, switch to polar to get $\int_0^{2\pi} \int_0^2 -5r - 6r^2 \sin(\theta) \, dr d\theta = -20\pi$.